
Upon satisfaction of these conditions, the analogy under consideration affords a possi- 
bility of analyzing convective thermal and mass transfer with volume sources on the basis 
of tests on gradient flows. 
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HEAT TRANSFER DURING MIXED CONVECTION ON A VERTICAL 

SURFACE IN A POROUS MEDIUM WITH DEVIATION FROM DARCY'S LAW 

A. V. Gorin, V. E. Nakoryakov, 
A. G. Khoruzhenko, and O. N. Tsoi 

UDC 536.255-66.067~I 

In recent years, the requirements of modern technology have stimulated interest in the 
study of flows which involve the interaction of several phenomena. One such problem is heat 
transfer during mixed natural and forced convection in porous media. The need to solve 
these problems stems from the broad use of granular media in chemical engineering (granular 
beds of catalysts) and the use of geothermal power energy sources and methods of intensifying 
oil and gas extraction, which are based either on organizing a moving combustion source or 
pumping hot water or steam. The problems are also encountered in the use of heat pipes and 
other devices. 

In these cases, convective heat flows are realized in porous media when a heated (or 
cooled) object is placed in a fluid whose density changes with temperature. Forced convec- 
tion occurs when an external flow moves around a surface. 

Problems of heat transfer with free and forced convection in a Darcy's law approximation 
have been studied in the greatest detail to date. Investigators have examined heating sur- 
faces with different geometries (plate, cylinder, flow along the inside surface of a cylinder) 
and different orientations in space - vertical, horizontal, and inclined plates. A detailed 
survey of the problems studied is offered in [i]. The problems were solved in a boundary L 
layer approximation and are based on the Darcy flow model. Conditions were established for 
the existence of similarity solutions for corresponding methods of assigning boundary condi- 
tions, and relations were found for the exponents in power laws describing the distributions 
of the external flow and wall temperature. 

However, we should point out the rather narrow range of applicability of Darcy's law 
[2]. It is restricted to the Reynolds number limit Re = u/H/v S O(I), constructed from the 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
i, pp. 143-149, January-February, 1988. Original article submitted July 28, 1986. 

0021-8944/88/2901-0133512.50 �9 1988 Plenum Publishing Corporation 133 



filtration velocity u and the scale of the pores - proportional to 4~ (~ is permeability 
and ~ is kinematic viscosity). The nonlinear filtration regime is of the greatest prac- 
tical interest. Also, this regime becomes additionally important when the boundary-layer 
approximation is used. Specifically (as noted in [3]), in any finite porous system, the 
boundary-layer approximation is Valid for sufficiently large Rayleigh numbers Ra = 
gShTL3/(~a) (g is acceleration due to gravity, ~ is the coefficient of volume expansion, 
L is a characteristic length, a is diffusivity, and AT = T w -- T~; here and below, the in- 
dices w and ~ denote parameters on the plate and at infinity, respectively; T is temperature). 
This leads to deviation from Darcy's law, since the scale of velocity increases with an in- 
crease in Ra, i.e., the Darcy approximation becomes less accurate as the boundary-layer 
approximation improves in accuracy. 

In the literature, we know only of the studies [3, 4] in regard to investigations of 
natural convection on a vertical plate in a granular medium under conditions of nonlinear 
filtration, calculated from the Forscheimer equation 

u~ln + bpu ~ = --[VP + Pgl, ( 1 )  

where ~ is dynamic viscosity; p is the density of the fluid; b is a proportionality factor; 
Vp is the pressure gradient. These two studies employ the same formulation of the problem. 
The authors showed that similarity solutions do exist in the cases of an isothermal wall [3, 
4] and a constant heat flow on the wall [3]. The deviation from the Darcy regime is 
characterized by the modified Grashof criterion Gr b = gSATbH2/v = (at Gr b + 0, we have the 
regime of linear filtration; at Gr b + =, the deviation from Darcy's law is maximal). The 
results obtained in [3, 4] show that, under conditions of free convection in a porous medium, 
failure to allow for nonlinear filtration effects leads to a reduction in heat transfer. 

Here we examine the problem of heat transfer during mixed convection on a vertical plate 
placed in a porous medium with a deviation of the filtration regime from Darcy's law. 

Formulation of the Problem 

The macroscopic equations of mass conservation and heat transfer in granular layers 
modeling porous media are written as follows [i] for steady-state conditions 

Ou/Ox-t-Ov/Oy = O; ( 2 )  

uOT/Ox-F vOT/Oy = aO~T/Oy ~. (3) 

We take (i) as the equation describing filtrational motion in the region of Reynolds 
numbers greater than unity. Using the Boussinesq approximation p = P~[I - ~(T -T~)], after 

cross differentiation we exclude the pressure from (i) 

[] 0 +_. H , OT ( 4 )  
(w ~ u] - ~ [I (w ~ v] = P~gP off 

H e r e ,  f (w  ~  = 1 + b f fpw~ w ~ i s  t h e  l o c a l  v e l o c i t y ;  t h e  + a n d  - s i g n s  c o r r e s p o n d  t o  t h e  

c o n d i t i o n s  T w > T~ and  T w < T~. 

I n  t h e  g e n e r a l  c a s e  o f  power  d e p e n d e n c e s  o f  t h e  w a l l  t e m p e r a t u r e  T w a nd  t h e  v e l o c i t y  
o f  t h e  e x t e r n a l  f l o w  U~ on t h e  l o n g i t u d i n a l  c o o r d i n a t e  x ,  t h e  b o u n d a r y  c o n d i t i o n s  h a v e  t h e  
fo rm T = T w = T~ + Ax X, v = 0 a t  y = 0 ,  T = T~,  u = U~ = Bx n a s  y + ~ .  The c o e f f i c i e n t s  

H a v i n g  d e t e r m i n e d  t h e  s t r e a m  f u n c t i o n  �9 ( u  = ~ / 8 y ,  
f o r m u l a t e  t h e  h e a t - t r a n s f e r  p r o b l e m  a s  f o l l o w s  i n  a 

A and B are assumed to be positive. 
v = -8~/ax) by the usual method, we 
boundary-layer approximation: 

~ ~ + 
oy ~ 

bno  o n or ( 5 )  

o~ or o~ or o2T. ( 6 )  
Oy Ox Ox Oy a Oy"' 

ov  ( 7 )  
T = T,~ = T .  -4- A 2 ' ,  ~ = 0 a t  y = 0 ;  

o~e (8) T = T ~ ,  ~ = B x  ~ a t  y - ~ o o .  

Let us examine the feasibility of obtaining similarity solutions for Eqs. (5) and (6) 
with boundary conditions (7) and (8). The form of the similarity variables can be obtained 

( U~11/2 T- -  ro~ 
by following the procedure described in [5 ] : q =, ~-x] y, IF = (aUo~x)ll2F 01), 19 (~]) ---- ~_ T~" 
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After their insertion into (5)-(8) (the primes denote differentiation), wehave 

Grb , 
F " +  = ( 9 )  

n + l  
o "  + - T -  F O '  - -  ~ F ' O  = 0; ( 1 0 )  

~] = 0~ 0(0)---- t~ F(0)---- 0; (11)  

- ~  ~ o ( ~ )  = 0, F ' ( ~ )  = l ,  ( 1 2 )  

where  Re b = U~bH/v i s  t h e  m o d i f i e d  R e y n o l d s  number ,  c h a r a c t e r i z i n g  t h e  d e v i a t i o n  o f  t h e  f i l -  
t r a t i o n  r e g i m e  f rom D a r c y ' s  law;  t h e  complex  Grb /Re  b i s  t h e  p a r a m e t e r  o f  mixed c o n v e c t i o n .  

It is interesting to study the limiting case of maximum deviation from Darcy's law 
(Re b + ~), this case being the asymptote of the problem being examined. This allows us to 
establish the main criterional relations for heat transfer in explicit form. These rela- 
tions can then be used to analyze more complicated situations. Also, such similarity solu- 
tions make it possible to easily calculate averaged parameters, which is of particular value 
in the first stage of engineering calculations. 

Boundary Conditions of the First Kind 

In the limiting case, when Re b is sufficiently large, the first term in Eq. (9) can 
be ignored. Free convection obviously has an effect on motion if Gr b ~ O(Re~). 

A similarity solution exists when the complex Grb/Re ~ is independent of x, i.e., X = 
2n. We write the problem in the form 

( F " ) '  = ~= (Orb/Reg) O'; (13)  

t (n + 2) FO' - -  ~F'O = 0 ( 1 4 )  O " + ~  

w i t h  b o u n d a r y  c o n d i t i o n s  ( i l )  and ( 1 2 ) .  E q u a t i o n  (13)  can  be i n t e g r a t e d  o n c e ,  so  t h a t  w i t h  
a l l o w a n c e  f o r  b o u n d a r y  c o n d i t i o n  ( 1 2 ) ,  i t  t a k e s  t h e  fo rm 

(F')  2 = _ (Grb/Re]) O + I. (15)  

Thus ,  Eqs .  (14)  and ( 1 5 ) ,  w i t h  b o u n d a r y  c o n d i t i o n s  (11)  and ( 1 2 ) ,  d e s c r i b e  h e a t  t r a n s f e r  
during mixed convection with maximal deviation of the filtration regime from Darcy's law. 

It is useful to note the following. The complex Grb/Reb 2 can be regarded as the specific 
Froude number for nonisothermal fluid motion modified for the case of nonlinear filtration: 

G% g~AT I Fr~ Thus, Eq. (15) is transformed as follows:(f') ~ = FrOm@ + I. 

The local heat flux on the plate 

q~ = -- A(0T/@)y=0 

while the heat-transfer coefficient 

---- AA T(Uo./ax)V~ [ - -0 ' (0)  ]~ 

= A ( U ~ / a x )  1/~ [ - -0 ' (0)  ] 
o r ,  i n  d i m e n s i o n l e s s  fo rm 

Nu~/Pe~/2 = - -  @' (0)~ (16)  

where  Nu x = a x / A  i s  t h e  N u s s e l t  number ;  Pe x = U ~ x / a  i s  t h e  P e c l e t  number ;  h i s  t h e  e f f e c -  
t i v e  t h e r m a l  c o n d u c t i v i t y  o f  t h e  f i l t r a t i n g  f l u i d ;  t h e  v a l u e s  o f  [--@'(0)] a r e  a f u n c t i o n  
o f  t h e  complex  Grb /Re  ~. 

Boundary Conditions of the Second Kind 

In this case, qw = -A(ST/Sy)y = 0 = const. For the characteristic temperature 
gradient AT and the boundary-layer thickness 5, this leads to the estimates qw/A ~ &T/d, 
AT ~ qw~/A, 6 ~ Pe~ I/2. 

Introducing the similarity variables N = (U~/ax)i/~y, ~ = (aU~x) I/2.F(D), @= 

T - - T ~ A  ~_1/2 
- -  - rv~ , we o b t a i n  t r a n s f o r m e d  e q u a t i o n s  (5 )  and ( 6 ) :  
qw x 
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with the boundary conditions 

( F ' ' ) '  = 4- (Ra:/Pe~/')  O'; 

t FO' -- �89 (t -- n) F'O = 0 o" + ~-(n + I) 

(17)  

(18)  

07o) = -i, F(0) = 0 at n = 0; (19) 

O(~) = 0, F'(~) = i at 0 ~ ~ (2O) 

Here, Ra~ = g~qwXB/(Ab,~) is the modified Rayleigh number; the complex Ra~/Pe~/2 is the 

parameter of mixed convection. At n = 1/5, it is independent of x, and the problem becomes 
self-similar. Integrating Eq. (17) once with allowance for boundary condition (20), we 
obtain 

(F')  ~ = 4- (Ra~/Pe~/") e + L (21)  

Thus, similarity problem (18-21) describes heat transfer during mixed convection in 
a granular bed under conditions of maximal deviation of the filtration regime from Darcy's 
law with second-kind boundary conditions. 

The following relation is valid for the local Nusselt number 

Nux = qw x : pe~12 T-- r~ A [0 (0)]-*. (22) 

The values of 8(0) are a function of the complex Ra~/Pe~/2. 

Intermediate Regime 

When all of the terms in (9) are important, a similarity solution is possible only 
when X = n = 0, i.e., for an isothermal wall and an external flow moving at a constant 
velocty; here, Eq. (9) retains the same form, while (i0) can be simplified: 

O" + ~FO' = 0. (23) 

Boundary conditions (ii) and (12) are also valid for the problem being examined. The 
corresponding criteria have the form Re b = BbH/v, Grb/Re b = gSAH/~B. In Eq. (16), for the 
local Nusselt number, the values of 8'(0) will depend on two parameters: Re b and Grb/Re b. 

Analysis of the Results 

The resulting systems of ordinary differential equations (ii), (12), (14), (15); (18)- 
(21); (9), (ii), (12), (23) were solved by a numerical method. We used the method of 
superposition to reduce the boundary-value problem to a Cauchy problem. We then solved 
the latter by a fourth-order Runge-Kutta method. 

Figure 1 shows characteristic profiles o5 the dimensionless velocity and temperature in 
the boundary layer with mixed convection under the conditions T w > T~ and T w < T~ for dif- 
ferent values of the control parameters G. These profiles are stratified with respect to 
the values of G. The figure shows cases of first-order boundary conditions for the inter- 
mediate regime (a - Re b = 0.10, G ~ Grb/Reb), and for maximal deviation fromDarcy!s law (b- 

~ 1/32 G ~ Grb/Re~), as well as second-order boundary conditions at Re b + ~ (c - G 
Ra~/Pe~/2); the dashed lines show calculated profiles of the temperature and velocity for 
oppositely directed flows produced by natural and forced convection (T w < T~); curves i-4 
were constructed for the control parameters 100, 10, I, and 0.1, respectively. Curves 5 
and 6 in Fig. la and b were constructed for G = 0.5 and 1.0, while curves 5 and 6 in 
Fig. ic were constructed for G = 0.3 and 0.6, respectively. 

A change in the criterion G makes it possible to determine the effect of natural con- 
vection on motion. Large values of the ratios Grb/Re b and Grb/Re ~ indicate that the effect 
of natural convection is predominant. Natural convection in the opposite direction, with 
an increase in G, increases the effect of stagnation phenomena on motion. The profiles of 
dimensionless excess temperature are analogous in form to the profiles for free or forced 
convection. We might also note the similar character of the temperature profiles through- 
out the investigated ranges of the parameters Grb/Reb, Grb/Re~, Ra~/Pe~/~ 

Figure 2 characterizes the change in the dimensionless heat-transfer coefficient 
Nux/Pe~12 obtained from Eqs. (16) and (22) in relation to the corresponding control para- 
meters G for each of the following cases: a - intermediate regime, when the deviation 
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from Darcy's law is small, with first-kind boundary conditions; b - first-kind boundary 
conditions with a maximum deviation from the Darcy regime; c - second-kind boundary condi- 
tions (constant heat flux on the wall), with Re b + ~. 

Curves 1-3 in Fig. 2a are constructed for Re b = 0.i0, 0.05, and 0 (i.e., for linear 
filtration in accordance with Darcy's law), while the curves in Fig. 2b were constructed 
for I = 1, 1/3, and 0, respectively. An asterisk is used in Figs. 2a and b to denote cal- 
culations performed for oppositely directly flows. Analogous data is represented in Fig. 
2c by the short branch of the curve, which indicates a reduction in heat transfer with an 
increase in the parameter Ra~/Pe~/2. 

The relation Nux/Ra~/4 = --0'(0) was obtained in [3] for the heat-transfer coefficient 
for free convection on an isothermal wall with maximal deviation from the Darcy regime and 
T w > T~. This relation can be represented in the form Nux/Pe~/2 = (Grb/Re~)I/4[--~O'(0)], 
where O'(0) = -0.494 and serves as the asymptote of the solution we obtained when free 
convection is predominant at I = 0 (this case is represented by the dot-dash line in Fig. 2b). 

The asymptote for forced convection (the dashed line in Fig. 2b) can be obtained by 
solving Eqs. (13) and (14) for an isothermal wall (I = 0) at Grb/Re ~ = 0. The system takes 

the form (F') 2 = i, @" + F~'/2 = 0. From this, with allowance for boundary conditions (ii) 

and ( 1 2 ) ,  we f i n d  t h a t  8 = - -  ~--~X exp(--~/2)d~ + t.  A c c o r d i n g l y ,  O'(0) = -1/~'-~ = -- '0.5642. 

I n  r e g a r d  t o  t h e  r a n g e s  o f  t h e  p a r a m e t e r  Grb /Re~ ,  we can  d i s t i n g u i s h  t h e  f o l l o w i n g  
r e g i m e s  ( w i t h  an e r r o r  no l a r g e r  t h a n  5%) f o r  an i s o t h e r m a l  w a i l :  0 < Grb /Re  ~ < 0 . 4  - 
f o r c e d  c o n v e c t i o n ;  0 . 4  < Grb/Re ~ < 7 - mixed c o n v e c t i o n ;  Grb/Re g > 7 - f r e e  c o n v e c t i o n .  

F o r  s e c o n d - k i n d  b o u n d a r y  c o n d i t i o n s  in  t h e  c a s e  o f  maximal  d e v i a t i o n  f rom t h e  D a r e y  
r e g i m e  ( F i g .  2 c ) ,  t h e  a s y m p t o t e  c o r r e s p o n d i n g  t o  t h e  p r e d o m i n a n c e  o f  f r e e  c o n v e c t i o n  [3] 
can  be r e p r e s e n t e d  in  t h e  fo rm ( d o t - d a s h  l i n e )  Nux/Pe~/2  = [O(O)]-l(Rag/Pe~[2) 1Is. The 
c a l c u l a t i o n s  in  [3] gave  t h e  v a l u e  8(0) = 1 . 243 .  

I n  t h e  c a s e  o f  t h e  p r e d o m i n a n c e  o f  f o r c e d  c o n v e c t i o n ,  t h e  s o l u t i o n  o f  s y s t e m  ( 1 8 ) - ( 2 1 )  
a t  R a g / P e ~ / 2  ~ 0 l e a d s  t o  t h e  h e a t - t r a n s f e r  law ( d a s h e d  l i n e )  Nux/Pe~/2  = 0 . 8 6 4 1 .  For  
p r a c t i c a l  c a l c u l a t i o n s ,  i t  i s  p o s s i b l e  t o  recommend t h e  f o l l o w i n g  h e a t - t r a n s f e r  r e g i m e s  
w i t h  r e s p e c t  t o  t h e  p a r a m e t e r  R a ~ / P e J 2 :  0 < Ra~/Pe~/2 < o.35 - f o r c e d  c o n v e c t i o n ;  0 .35  < 
R a ~ / P e ~ / 2  < 5 - mixed c o n v e c t i o n ;  R a ~ / P e ~ / 2  > 5 - , f r e e  c o n v e c t i o n .  

As shown by a n a l y s i s  o f  t h e  c o m p l e t e d  c a l c u l a t i o n s  o f  h e a t  t r a n s f e r  in  t h e  i n t e r m e d i a t e  
r e g i m e  (when a l l  o f  t h e  t e r m s  in  e q u a t i o n  o f  m o t i o n  (9 )  a r e  c o n s i d e r e d ) ,  w i t h  s m a l l  v a l u e s  
o f  t h e  c o n t r o l  p a r a m e t e r  Grb/Re b, t h e r e  i s  a l m o s t  no s t r a t i f i c a t i o n  o f  t h e  h e a t - t r a n s f e r  
c o e f f i c i e n t  w i t h  r e s p e c t  t o  t h e  number  Re b ( F i g .  2 a ) .  Thus ,  i n  t h e  r a n g e  0 < Grb /Re  b < 0~2, 
h e a t  t r a n s f e r  can  be c a l c u l a t e d  on t h e  b a s i s  o f  t h e  a s y m p t o t e  f o r  f o r c e d  c o n v e c t i o n  ( t h e  
d a s h e d  l i n e  in  F i g .  2 a ) :  Nux /Pe~ /2  = 0 . 5 6 4 2 .  With  an i n c r e a s e  in  G r b / R e b ,  s t r a t i f i c a t i o n  
w i t h  r e s p e c t  t o  t h e  number  Re b becomes s i g n i f i c a n t ;  c a l c u l a t i o n s  f o r  Re b = 0 . 0 5  and 0 .10  
a r e  shown in  F i g .  2a .  The d o t - d a s h  l i n e  shows t h e  a s y m p t o t e  c o r r e s p o n d i n g  t o  f r e e  c o n v e c -  
t i o n  in  t h e  D a r c y  f i l t r a t i o n  r e g i m e  [1]  

Nu~/Pe~/2 = 0.444(Grb/Rev) ~/~. 
t 

At s m a l l  v a l u e s  o f  Re b ( i n  t h e  p r e s e n t  c a s e ,  even  a t  Re b 5 0 . 0 5 ) ,  h e a t  t r a n s f e r  can be c a l -  
c u l a t e d  t o  w i t h i n  5% on t h e  b a s i s  o f  f r e e  c o n v e c t i o n  w i t h  l i n e a r  f i l t r a t i o n  b e g i n n i n g  a t  
Grb /Re  b ~ 4 . 5 .  

The effect of deviation of the filtration regime from Darcy's law on heat transfer 
i 

in mixed convection is shown in Fig. 3, where @o(0) is heat transfer in the Darcy regime 
[6], and O'(0) is our estimate for the intermediate regime with Re b = 0.10. 

Figure 4 shows the change in the dimensionless thickness of the boundary layer ~6 in 
the three types of problems examined above in relation to the corresponding control para- 
meters G: 1) G ~ Grb/Reb, 2) G ~ Grb/Re~, 3) G ~ Ra~/Pe~/2, 

Thus, the completed analysis shows that heat transfer by mixed convection on a vertical 
plate immersed in a granular bed, with allowance for the contribution of the inertial term 
in the resistance law, is determined by the ratio of two criteria (first-kind boundary 
conditions): Gr b (introduced in [3, 4]) and Re b. 
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For second-kind boundary conditions, the characteristic parameter is composed of the 
criteria Ra; and Pe x (it is not hard to show that Ra~/Pe~/2 % Grb/Re~). 

We should also point out the following feature of the class of problems examined here: 
in the case of heat transfer by mixed convection through the motion of a one-phase fluid 
about a smooth plate, the only convection parameter is the ratio Gr/Re 2 [5]. For a plate 
in a granular bed with maximal deviation from Darcy's law, we have the control parameter 
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Grb/Re ~. In the case where the contributions of the linear and quadratic terms in Eq. (i) 
are comparable, the control parameter is Grb/Re b. It should also be noted that for granular 
beds, the numerical values of Gr/Re (the control parameter for a linear filtration law, 
Gr = g~ATHx/~ 2, Re = u /~/v) and Grb/Re b (with a deviation from the linear law) are iden- 
tically equal. As noted above, this makes it possible to use the asymptote for free con- 
vection, which is analogous to the asymptote for mixed convection under conditions of 
linear filtration. 
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MELTING OF LEAD IN SHOCK COMPRESSION 
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The transition of a solid in shock-wave compression to the liquid phase (as 
in any phase transition during shock compression) occurs within a certain pressure 
range associated with a section on the Hugoniot curve corresponding to a mixture of two 

phases. Schemes for the formation of the accompanying flows were examined, for example, 
in [i, 2] for a phase transformation involving a reduction in volume and in [3] for fusion. 
It was noted in [3J that the fusion of a substance in a shock wave (SW) cannot be recorded 
by presently known empirical methods based on the measurement of wave and mass velocities 
because the change in the parameters of the substance during melting is very small. In 
well-known experiments, conclusions on the occurrence of melting in an SW were made on the 
basis of changes in the viscosity of metals behind the shock front [4] and impulsive x-ray 
diffraction study of the character of motion of the free surface of a specimen during impact 
[ 3 ] .  

Here, we present experimental results on the fusion of lead in an SW obtained by two 
independent methods: study of the dependence of the dynamic yield point Yd on the ampli- 
tude of the stress o x in unidimensional shock-wave compression; study of microstructural 
changes in specimens after shock-wave loading. 

We used manganin wire stress gauges located in two mutually perpendicular sections of 
the test specimen to directly measure the longitudinal o x and transverse Oy components of 
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